
Django Unstuck 
Suggestions for common challenges in your projects



About me

I'm Johannes Spielmann, software developer-for-hire from Germany. 
I've been doing Django projects for almost 15 years.
I've done projects both small and large, both in commercial and non-commercial 
settings
I've seen all of what we're about to do many times.
You should hire me!

Email me at j@spielmannsolutions.com!

mailto:j@spielmannsolutions.com


Django Unstuck: Suggestions 
for common challenges in 

your projects



There are challenges that 
come up in every Django 

project.



How do we get past them?



Here are some solutions I’ve 
found

Some people may call these things “best practices” or “patterns” or “recipes” or 
“ideas” or “opinions”.
These are just things I’ve found to work in these situations many times.
Some of these solutions are more directly applicable, others are more guideline-style.



App management
Templates

Middlewares and Context 
Processors

Code in models, views or 
managers?

We are going to look at these four things:

App management and placement (and urlpatterns and settings)
How do we make sure we can find and understand our apps? How do we 

make it easy to decide where code goes?
How do we make our settings modular and easy to understand and modify?

Templates
Where to we put them? What do we call our blocks?

When to use Middlewares and context processors and what are they?
Code/Logic can go into many different places: models, views, managers or 
somewhere else entirely? So where should you put your logic then?



App management and placement (and urlpatterns)
Username vs email address
Registration
Background tasks and long-running processes and Caching
Templates: Placement, folders, blocks and inheritance and namespaces
Should you do i18n and l10n right away?
When and how to start caching (memcached, redis etc.)
Fat models, fat views or fat managers or something else?
When to use Middlewares and context processors and what are they?
How to secure access: security middlewares or login_required (white vs 
black list)
How to create files and store them in file models
What to do about image scaling and thumbnailing (and hosting)?
How to serve content: coded pages, flatpages or Wagtail?

There are more...



Join us!

https://github.com/shezi/django-
unstuck

https://discord.gg/bUsu9B6Ek6
https://t.me/djangoRhein

https://github.com/shezi/django-unstuck
https://discord.gg/bUsu9B6Ek6
https://t.me/djangoRhein



Part 1
App management and 

urlpatterns and settings



Let’s start a new Django 
project

$ django-admin.py startproject tuque
$ cd tuque
$ ./manage.py startapp mytuque

Note: I took that name from a name generator. It’s a woolen hat.
Image credit: https://unsplash.com/photos/AQRp2NH-O8k



Challenge: organize your project such that:

everything has its place

what belongs together, stays together

code/URLs are easily found

settings are flexible

🖫

🔗

🔍

〰 



Step 1
configuration

🖫

🔗

🔍

〰 
Create a config directory
Below that, a settings directory
Put the configuration in config directory
Put your config in config/settings/
Create base config, development config, production config (and optionally local 
config, but do not forget to .gitignore that one!)
Wire it all up so that it works.



Step 2
apps directory

🖫

🔗

🔍

〰 
Create an apps directory
Put the python path into manage.py and wsgi.py
Rejoice in the cleanness of your construction



Step 3
URL patterns

🖫

🔗

🔍

〰 
Put an urls.py into your new app, give it an app_name and urlpatterns.
Wire it up directly in config/urls.py



Step 4
template placement

🖫

🔗

🔍

〰 
Actually, no, that’s in Part 2



Part 2
Templates: Placement, 

folders, blocks and 
inheritance and namespaces



Where are your templates?
What are they called?



Challenge

All templates live in one big namespace.
Yet there are many places in the filesystem.

Decide where a template file goes!
Identify what a template belongs to!
Make sure namespace clashes are minimal!



Step 1
Main template directory

Contains base.html and sub-bases, and global utilities (menu snippets, breadcrumbs, 
form snippets, …) -- everything that is part of the project as a whole.
Do not forget to wire it up in settings!
Note: easy to include, always at the same place (in template space and file system)



Step 2
In-app template directories

These folders contain everything for that specific app. Each item in here should be 
tied either directly to a view or to some other template.
Always inside a sub-folder with the app name, never "on top".
Always named like the view function/class, and the URl pattern should have the 
same name. That way you can always find one from the other.
You should never need to include things from another app. If that is the case, think 
about whether you should migrate that specific thing to the main directory.



Now do the same for static 
files!

Static files are very similar to template files: have one global folder “static/” in your 
project root, where project-wide things go: CSS, JS, downloadable files etc.
Then each app gets its own static folder, with an app-name folder inside. This 
reduces clashes and makes files easy to find and understand.



Part 3
Middlewares and context 

processors
(and custom template tags)

What are they?
When do we use each?
Note: This is not an implementation guide, those exist aplenty. This is a decision 
guide: which one should you implement?



The request cycle: a request comes in, gets processed by a view, rendered in a 
template
The result is a response.
Easy!



Context processors

Sometimes you want to do things that show up in each rendered template. That’s 
what context processors do.



In addition to the request/response cycle from before, a context processor can ADD 
to the template context

Executed for every rendered template
Add to the template context
Stuff you need on every page (ie. in every page)
Very little outside context, just: request → context data
Examples:

Logged-in users
Menu structures

Should you write context processors? Probably yes!



A simple code example: Fetch product categories from the database, so you can 
render a menu on each page.



Middleware

Finally, a middleware wraps the entire request/response cycle, so it can change 
every step of the process. This makes it more powerful, but also more complicated.



Finally, a middleware wraps the entire request/response cycle, so it can change 
every step of the process.

Can also change the template context
Note: This means middlewares wrap each other, too, so ordering in the settings is 
important!
Can do much more than context processors
Stuff you need to do for every request
Examples:

Global permission checking
Security in general
Debug Toolbar
A middleware that catches errors and shows you StackOverflow answers (

https://simpleisbetterthancomplex.com/tutorial/2016/07/18/how-to-create-a-custom-dj
ango-middleware.html
)

Wagtail: Middleware for routing and redirects

Should you write middleware? Probably not!



An example from the Django code base: the message middleware from the 
messages framework.
The code itself is not important. What’s important here is the structure: a middleware 
is a class that has hooks into the request/response lifecycle.
Here, two hooks are used: process_request and process_response. But there are 
more. For details, see 
https://docs.djangoproject.com/en/3.2/topics/http/middleware/#other-middleware-hoo
ks



When should you use which 
one?

https://simpleisbetterthancomplex.com/tutorial/2016/07/18/how-to-create-a-custom-django-middleware.html
https://simpleisbetterthancomplex.com/tutorial/2016/07/18/how-to-create-a-custom-django-middleware.html


Menu structure

Context processor

https://docs.djangoproject.com/en/3.2/topics/http/middleware/#other-middleware-hooks
https://docs.djangoproject.com/en/3.2/topics/http/middleware/#other-middleware-hooks


Content-Security-Policy 
headers

Middleware

https://django-csp.readthedocs.io/



Detecting problematic DB 
queries

Middleware

https://github.com/jmcarp/nplusone



Counting db queries

Middleware

https://github.com/bradmontgomery/django-querycount

https://django-csp.readthedocs.io/


Show shopping basket

Context processor

https://github.com/jmcarp/nplusone


Monitoring login attempts

Middleware

https://github.com/jazzband/django-axes

https://github.com/bradmontgomery/django-querycount


CORS headers

Middleware

https://github.com/adamchainz/django-cors-headers



Show most recent blog posts

Context processor

https://github.com/jazzband/django-axes


Monitoring server errors

Middleware

https://raven.readthedocs.io/en/stable/integrations/django.html

https://github.com/adamchainz/django-cors-headers


Highlight items on sale

Context processor



Breadcrumbs

???

https://raven.readthedocs.io/en/stable/integrations/django.html


Show some items in dynamic 
page footer

Context processor



This is the main takeaway of this section:
If you do something for every rendered template, use a context processor.
If you do something for every request, use a middleware.



Part 4
Code in models, views, 

managers or somewhere 
else?



Challenge:
Where do you put your code?

We have some models, and these models need to do some things.
Where should we put the code for that?
Into the models
Into a model controller
Into the view
Into some other arbitrary place

Note: This is ALSO not an implementation tutorial, but a decision tutorial.
Note: there is no real answer!



Models

Put everything in your model class.

- model classes are supposed to be storage abstractions
- no single purpose for model class
+ everything that has to do with data is in one place

We call these “massive models”.



An example: a subscriber that has methods for putting charges on their card.

Not really a storage abstraction any more. There is no clear purpose for this class, as 
it interacts with the database as well as with other APIs.
Also, this class will end up having 2000 lines and 100 methods. It is massive!



Model Managers

Put some methods into model manager.
Model managers are abstractions for database access. Every model class has a 
default manager, which is ModelClass.objects

- a bit more inconvenient
- instances must be passed
- not very SOLID either: purpose is supposed to be storage retrieval
+ probably correct placement for creation/copy methods



Separating out the previous example into a model manager is much cleaner.



Views

Let the view function do all the stuff.
Well, not all the stuff obviously: have auxiliary functions and classes and methods, of 
course!

- harder to reuse
- structure is ad-hoc, not easy to read
+ business logic is all in one place.



Let the view function do all the stuff.
Well, not all the stuff obviously: have auxiliary functions and classes and methods, of 
course!

- harder to reuse
- structure is ad-hoc, not easy to read
+ business logic is all in one place.



Utility files/classes?

They exist, too, yes. I have them in each and every one of my projects, because it is 
just so hard to decide where code goes.
And sometimes that’s the right place, too. For code that is needed in many different 
places or does not have a clear affiliation.



Examples

Some examples:
- Prepare some query: model or model manager, depends
- Create new model instance and save it: manager
- Create new model instance without saving: manager or model
- Create a new model instance from something else: manager or model
- Compute a value for a single model instance: model or view
- Compute a value for a single model instance depending on some value in the 

request: view or model method with request



Prepare a query

Manager

Some examples:
- Prepare some query: model or model manager, depends
- Create new model instance and save it: manager
- Create new model instance without saving: manager or model
- Create a new model instance from something else: manager or model
- Compute a value for a single model instance: model or view
- Compute a value for a single model instance depending on some value in the 

request: view or model method with request



Create new model instance
And save it

Manager

Some examples:
- Prepare some query: model or model manager, depends
- Create new model instance and save it: manager
- Create new model instance without saving: manager or model
- Create a new model instance from something else: manager or model
- Compute a value for a single model instance: model or view
- Compute a value for a single model instance depending on some value in the 

request: view or model method with request



Create new model instance
Without saving

Model

Some examples:
- Prepare some query: model or model manager, depends
- Create new model instance and save it: manager
- Create new model instance without saving: manager or model
- Create a new model instance from something else: manager or model
- Compute a value for a single model instance: model or view
- Compute a value for a single model instance depending on some value in the 

request: view or model method with request



Create new model instance
From something else

Manager

Some examples:
- Prepare some query: model or model manager, depends
- Create new model instance and save it: manager
- Create new model instance without saving: manager or model
- Create a new model instance from something else: manager or model
- Compute a value for a single model instance: model or view
- Compute a value for a single model instance depending on some value in the 

request: view or model method with request



Compute a value
For a single model instance

Model method

Some examples:
- Prepare some query: model or model manager, depends
- Create new model instance and save it: manager
- Create new model instance without saving: manager or model
- Create a new model instance from something else: manager or model
- Compute a value for a single model instance: model or view
- Compute a value for a single model instance depending on some value in the 

request: view or model method with request



Compute a value for a single 
model instance depending on 

some value in the request

View

Some examples:
- Prepare some query: model or model manager, depends
- Create new model instance and save it: manager
- Create new model instance without saving: manager or model
- Create a new model instance from something else: manager or model
- Compute a value for a single model instance: model or view
- Compute a value for a single model instance depending on some value in the 

request: view or model method with request



Decisions, decisions!

There is no right way to do it, but there’s also no wrong way to do it.

Don’t be afraid to try things out. Don’t be afraid to go back and change or rearrange 
things.

Do write tests, they will give you confidence when rearranging your code!



That’s all!



There’s more!

https://github.com/shezi/django-
unstuck

https://discord.gg/bUsu9B6Ek6
https://t.me/djangoRhein

https://github.com/shezi/django-unstuck
https://discord.gg/bUsu9B6Ek6
https://t.me/djangoRhein

My name is Johannes Spielmann. Email me at j@spielmannsolutions.com!
I’m looking forward to talking to all of you!


